目的 合成具有肿瘤靶向作用、穿膜能力和药物载体功能的嵌合肽T7-R8,制备安全有效的T7-R8/pTRAIL纳米复合物,初步研究其对小鼠黑色素瘤B16F10细胞的增殖抑制作用。方法 采用标准固相合成法合成多功能嵌合肽T7-R8,共孵育法制备T7-R8/pTRAIL纳米复合物,并对其理化性质进行评价,用流式细胞仪检测细胞转染效率,用CCK-8法检测抑制黑色素瘤细胞增殖的能力。结果 当T7-R8/pTRAIL质量比≥10时,带正电的T7-R8载体可以完全压缩pTRAIL形成稳定的纳米复合物,选择最佳质量比(WT7-R8/WpTRAIL=20∶1)用于抗黑色素瘤增殖实验,经过T7肽修饰后,发现T7-R8/pTRAIL纳米复合物对黑色素瘤增殖抑制作用强于R8/pTRAIL纳米粒(P<0.05)。结论 T7-R8/pTRAIL纳米复合物可能是一种高选择性、高效的抗黑色素瘤给药系统,为后续的治疗研究提供新的思路。
Abstract
OBJECTIVE To design and synthesize Achimeric peptide T7-R8 with tumor targeting ability, cell penetrating ability and drug carrier function and evaluate the inhibitory activity of the proliferation of B16F10 cells. METHODS The multifunctional chimeric peptide T7-R8 was synthesized by standard solid phase synthesis, followed by electrostatic interaction with pTRAIL. The physicochemical properties of T7-R8/pTRAIL were evaluated. The cell transfection efficiency was examined by flow cytometry and the proliferation inhibition of B16F10 cells was evaluated by CCK-8 assay. RESULTS Cationic T7-R8 carrier could be fully condensed with pTRAIL to form the stable nanocomplexes when the mass ratio≥10. The nanocomplexes with the best mass ratio (WT7-R8/WpTRAIL=20∶1) was evaluated for the anti-melanoma proliferation activity. The in vitro cytotoxicity experiments demonstrated that the T7-R8/pTRAIL nanocomplexes was significantly more active than R8/pTRAIL nanocomplexes (P<0.05). The B16F10 cell cytotoxicity activity were increased by modification of T7 peptide. CONCLUSION T7-R8/pTRAIL nanocomposites could be a highly selective and efficient anti-melanoma drug delivery system, providing a new approach for the following treatment research.
关键词
转铁蛋白受体 /
基因治疗 /
嵌合肽 /
黑色素瘤 /
药物载体
{{custom_keyword}} /
Key words
transferrin receptor /
gene therapy /
chimeric peptide /
melanoma /
drug carrier
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] JEMAL A, SIEGEL M R, WARD E, et al. Cancer statistics, 2007[J]. Cancer J Clin, 2007, 57(1):43-66.
[2] LUKE J J, SCHWARTZ G K . Chemotherapy in the management of advanced cutaneous malignant melanoma[J]. Clin Dermatol, 2013, 31(3):290-297.
[3] IYER A K, KHALED G, FANG J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting[J]. Drug Discov Today, 2006, 11(17-18):812-818.
[4] LONG K H, WANG C L, LI H, et al. Construction of hyaluronic acid nanoparticles respnsive to breast cancer microenvironment and evaluation of its function in vitro[J]. Chin Pharm J(中国药学杂志), 2019, 54(16):1311-1316.
[5] MA Z, WU C, CHEN J. The research of hyaluronic acid functionalized mesoporous silica nanoparticles MCM-41 loading paclitaxel for SMMC-7721 liver cancer cells[J]. Chin Pharm J(中国药学杂志), 2019, 54(2):110-116.
[6] YANG C, ZHAO Q, CHEN S Y, et al. Biological application of folate-targeted fluorescent quantum dots liposome nanoprobes[J]. Chin Pharm J(中国药学杂志), 2019, 54(3):210-217.
[7] KHAN N, DAS D, MCLENNAN G . Assessment of folate targeting nanomolecule on human cancer cells for cancer drug delivery[J]. J Vascul Intervent Radiol, 2016, 27(3):S22.
[8] TORCHILIN V P. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers[J]. Adv Drug Deliv Rev, 2008, 60(4):548-558.
[9] FUTAKI S, OHASHI W, SUZUKI T, et al. Stearylated arginine-rich peptides: a new class of transfection systems[J]. Bioconjugate Chem, 2001, 12(6):1005-1011.
[10] MENNINI N, CIRRI M, MAESTRELLI F, et al. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: effect of cyclodextrin complexation[J]. Int J Pharm, 2016, 515(1-2):684-691.
[11] TIAN T, LI X H, WANG Q. Development of cell penetrating peptides for enhancing drug absorption[J]. Chin Pharm J(中国药学杂志), 2019, 54(16):1285-1291.
[12] ZHANG C, WU W, LI R Q, et al. Peptide-based multifunctional nanomaterials for tumor imaging and therapy[J]. Adv Funct Mater, 2018,28(50):1804492(1-22).
[13] OKURO K, KINBARA K, TSUMOTO K, et al. Molecular glues carrying multiple guanidinium ion pendants via an oligoether spacer: stabilization of microtubules against depolymerization[J]. J Am Chem Soc, 131(5):1626-1627.
[14] NOESEL M M V, BEZOUW S V, SALOMONS G S, et al. Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation[J]. Cancer Res, 2002, 62(7):2157-2161.
[15] FENG X Y, YAN L, ZHOU W Q. Effects of combination with SAHA and TRAIL treatment on cell growth of ER positive breast cancer cell line MCF-7[J]. Chin Pharm J(中国药学杂志), 2016, 51(16):1373-1378.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
重庆市自然科学基金项目资助(cstc2018jcyjAX0722);重庆市教委科学技术研究项目资助(KJQN201802805);重庆医药高等专科学校自然科学技术研究项目资助(ygz2018110)
{{custom_fund}}